
Code Management Guidelines
R and GitHub Starter Kit for New Team Members

Florencia D’Andrea

2024-12-23

Table of contents

I Goal 4
Introduction . 5
Ten reasons to define code management practices from day one 5
References . 7

What are the lab’s basic guidelines for data and code usage? 8
Who are we, and what do we need? . 8
Justification . 10
References . 11

Defining roles 12
GitHub Organization Manager . 12

Responsibilities � . 12
GitHub Team Maintainer . 12

Responsibilities � . 12

II Practical Steps 13

1 Onboarding 14
Checklist � . 14
1.1 Create Your Personal GitHub Account � � . 14
1.2 Request Access to the GitHub Organization � 15
1.3 Request Access to the Lab Team � . 15
1.4 Installation Instructions � . 15
References . 16

2 Starting a New Project 17
Checklist � . 17
2.1 Create a private repository by new project . 17
2.2 Add the Lab Team to the repository . 19
2.3 Clone the repository and associate it with an RStudio Project 20

2.3.1 Add your Data folder to .gitignore . 23
2.4 Complete the README using the template . 24
References . 25

2

3 Regular Project Workflow 26
Checklist � . 26
3.1 How to use the Git tab in RStudio . 26

3.1.1 Add all the files you want to commit to the staging area. 27
3.1.2 Create a commit message. 28

3.2 Push the changes to the GitHub repository. 29
3.3 Moving foward with Git and GitHub � . 29
References . 30

4 Offboarding 31

3

Part I

Goal

4

GitHub Organization: www.github.com/StringhiniLab

The goal of this manual is to provide the minimum necessary guidelines for new members
of Dr. Silvia Stringhini’s lab to follow agreed-upon practices in code management.

Introduction

The use of programming languages has become an essential part of data analysis for most
researchers today. In this context, a basic skill set in computer science is key to ensuring reliable
and reproducible results (Wilson et al. 2017; Hicks 2023; Abdill, Talarico, and Grieneisen 2024).
Although a variety of educational materials, tutorials, and recommended practices specifically
designed to train researchers are available (The Carpentries; Our Coding Club; The Turing
Way Community 2023; CodeRefinery Project), there is a trade-off: adopting and practicing
these techniques often requires significant effort, taking time away from researchers’ primary
fields of study (Allen and Mehler 2019; Goldsmith et al. 2021; Hicks 2023).

One consequence of the deficiency in training is the uncertainty researchers may have about
how to write code correctly, which negatively impacts their willingness to share their analyses
(Gomes et al. 2022). Thus, this results in a decrease in the number of publications with
available code, impacting the reproducibility and transparency of scientific research (Gomes
et al. 2022; Sharma et al. 2024). This issue is exacerbated by the lack of incentives from the
scientific system, leading to a high number of publications where authors do not share their
code, despite the benefits of making their code open source (Allen and Mehler 2019; Melvin
et al. 2022; Bertram et al. 2023; Tazare et al. 2024; Xu et al. 2025).

Encouraging researchers to actively adopting best practices and seek training in the use of
computational tools that facilitate or enhance their work is desirable and should be promoted.
However, leaving code management decisions entirely in their hands could have negative con-
sequences for a research group.

Ten reasons to define code management practices from day one

Would the problem be solved if future new members of the lab arrived with better training in
data science? No. We believe the research group should still define its priorities when it comes
to managing code.

There are several benefits to defining clear minimum guidelines and basic computational skills
from the moment new members join the lab:

1. Avoid messy projects from the start.
Centralizing data analyses on a GitHub Organization and creating standards for pushing

5

www.github.com/StringhiniLab

code promotes improved repository structuring, version control, and better-documented
code, ensuring reproducibility from the project’s inception.

2. Implement minimum documentation and project management best practices.
Defining group-level criteria for code and data management facilitates collaboration,
saving time and avoiding errors.

3. Focus on domain-specific skills first.
Identifying domain-specific computational skills can save time for new researchers.
This knowledge is sometimes shared in publications tailored to each discipline but is too
specific to be addressed by general training courses and tutorials for scientists, being the
only exception we know Data Carpentry (Data Carpentry 2024).

4. Early peer review.
Sharing analyses with team members in private repositories allows for valuable feedback.
Although initially restricted, this practice fosters confidence in making code publicly
accessible upon publication.

5. Define a set of practices that should not be overlooked.
Not all researchers who take a course in Git and GitHub will make their code available
if there are no guidelines on whether it is expected of them to do it or not and how.
Failing to define certain guidelines will result in each researcher adopting these practices
in varying degrees.

6. More efficient use of time. Taking a workshop on a computational tool may occur at
an advanced stage of the project. As a result, decisions about code organization, docu-
mentation, and file structure could have been made more effectively from the beginning,
saving valuable time.

7. Maintain the group’s research history.
This approach helps create and standardize a historical archive of the group’s data anal-
yses, ensuring continuity and avoiding dependence on researchers leaving behind their
code and data when they move on.

8. Facilitate exchange of ideas about data and code management among team
members. Creating guidelines helps build a body of knowledge that can be improved
over time with contributions from students/researchers, allowing for discussions on which
practices should be added, prioritized and/or removed.

9. Make informed decisions about what to learn next.
A researcher may hear that they should learn to use GitHub. By explaining from the
beginning what GitHub is and the minimum knowledge required, it becomes easier for
them to assess if they should focus on learning additional skills or not. Supporting new
members of the research group in adopting basic computational techniques from the start
lowers the barrier for researchers to explore other tools early.

6

10. Adoption of open science practices. If the group aims to begin making research
code available, these guidelines and training will effectively promote leaving the code
open source.

How to cite this book?
D’Andrea, F., & Stringhini, S. Code Management Guide-
lines: R and GitHub Starter Kit for New Team Members.
https://github.com/StringhiniLab/GitHubProceduresLab. Avail-
able at: https://stringhinilab.github.io/GitHubProceduresLab/ DOI:
https://doi.org/10.5281/zenodo.14510774

References

7

What are the lab’s basic guidelines for data
and code usage?

Who are we, and what do we need?

Dr. Silvia Stringhini is an epidemiologist with an extensive career. She has served as the Head
of the Unit of Population Epidemiology at the Geneva University Hospitals. Her main research
areas include social inequalities in chronic diseases and aging, the role of health behaviors in
the genesis of social health inequalities, the biological consequences of social inequalities, and
the role of environmental factors in social health disparities.

Recently, she moved her lab to the School of Population and Public Health at the University
of British Columbia in Canada, where she is establishing a new team. She is in the process
of welcoming new students and staff, making this an ideal time to outline how her new group
will manage data and code in its publications.

We discussed with Dr. Stringhini the minimal requirements regarding code management that
someone joining the lab should learn. A summary of the agreements reached and how they
influenced the creation of this manual can be found in Table 1. Many of these requirements
focus on creating a GitHub Organization for the lab.

Definitions: Git, GitHub and GitHub Organization
Git is a tool that helps you track changes to your files, like a digital history of your
work.
GitHub is an online platform that uses Git to store files and manage changes, col-
laborate with others, and manage your code in a centralized location. It’s like having
a shared folder with built-in tools to see what’s been changed and by whom. Each
project can be stored in its own repository.
A GitHub organization is a group on GitHub that allows teams to collaborate and
manage repositories together.

8

https://spph.ubc.ca/faculty/associate-professors/silvia-stringhini/
https://spph.ubc.ca/
https://www.ubc.ca/
https://www.ubc.ca/

Table 1: Book content overview. This table presents the benefits and selected topics in-
cluded in the book to guide the team on each prioritized action.

Action Benefit
What does this book
cover?

Centralize the data analysis
of the group in a GitHub
organization

Preserve copies of the
group’s data analyses

- Steps to create a GitHub
account and be added to the
lab’s organization - How to
create a GitHub repository

Avoid sending confidential
data to GitHub

Protection of sensitive data - Use of .gitignore -
Project structure
recommendations including
how to organize the data
folder

Select R as the primary
programming language and
RStudio as the IDE

Standardize the software
used in the lab

- Installation instructions -
Recommendations on
learning resources and good
practices

Share a copy of each lab
member’s analyses in a
private GitHub repository

- Create an initial version of
the project that is organized
and minimally documented
so another lab member can
understand it - Foster the
habit of performing code
backups - Receive feedback
from colleagues early in the
project development - Have
access to analyses from other
lab members that have not
been published

- How to create a private
GitHub repository and what
information to include -
Basic information to include
in the README - Creating a
GitHub team and defining
procedures to manage access
to private repositories -
Develop a basic workflow for
everyday use of Git and
GitHub.

Store the code associated
with scientific publications
publicly in a GitHub
repository

The benefits of leaving code
open source Bertram et al.
(2023).

This section will be
developed at the time of the
first paper’s publication

Additionally, considering the lab’s long-term evolution, onboarding and offboarding procedures
were defined.

9

https://book.the-turing-way.org/reproducible-research/open.html

Justification

We recognize that creating the code for a scientific publication takes time and involves numer-
ous attempts before deciding what figures and results effectively will be published. Keeping
this in mind, it was decided that each student would generate a private GitHub repository
by project to maintain a backup of daily data analyses conducted in the lab. This private
repository could then serve as the foundation for a public version for the final GitHub reposi-
tory with the scientific article’s code. Publicly sharing the code and data management process
can be more challenging for early-career researchers (Gomes et al. 2022; Tazare et al. 2024).

Maintaining this initial private repository has other benefits in addition to functioning as a
backup: it allows sharing the code with other lab members (as part of a GitHub lab team),
makes available analyses that may not be included in the final paper but could be relevant
for another publication, helps keeping a clearer project structure from the beginning and
improves the overall documentation of the project.

Characteristics specific to the research area were discussed, including handling sensitive data
(Mathur and Fox 2023; The Turing Way Community 2023). As a result, practices like using
.gitignore and and creating a data/ folder with raw/ and processed/ sub folders were
suggested to prevent private data from being pushed to GitHub and to maintain an orderly
system for storing such information within the project. Also, we created a README template
designed to be accessible to non-programmers to be sure that the relevant information, as the
database version in use and computational environment, is captured.

What is a .gitignore file
A .gitignore file is a special file used in Git repositories to specify which files and
directories should be ignored, meaning they won’t be tracked or included in version
control. This is useful for excluding temporary files, sensitive data, or files that
shouldn’t be shared with others.

One of the more challenging aspects to adopt is using Git, as it has multiple utilities and a
considerable learning curve. Considering this, it was decided that, in this initial stage, Git and
GitHub’s primary use would be to create an online and centralized backup of the projects,
share repositories among team members, and manage version control instead of focusing in
collaborative tools.

Since R is the most widely used programming language in the discipline, the team decided to
leverage the Git integration provided by RStudio’s Git tab for integrating students’ local
work into the GitHub repositories.

10

What is the difference between R and RStudio?
R is a programming language and software environment used for statistical computing
and data analysis.
RStudio is an integrated development environment (IDE) for R, providing a user-
friendly interface with tools for writing, editing, and running R code, as well as
visualizing data and managing projects.

References

11

Defining roles

GitHub Organization Manager

The Owner of the organization can add new members. Ensure that new lab members join the
GitHub Organization. Follow the instructions on how to do it in Inviting users to join your
organization.

You will need to wait for the new member to create a GitHub account before you can
add them. They should share their username with you.

Responsibilities �

• Add new lab members to the GitHub Organization.

GitHub Team Maintainer

At least one person in the lab will be assigned as the Team Maintainer of the GitHub orga-
nization. This role will allow them to add and remove members from the team, granting or
revoking access to private repositories.

For this, it’s important to assign the Lab Member in charge the Team Maintainer role for
the Lab Team.
Follow the instructions in Assigning the team maintainer role to a team member

If properly assigned the label maintainer should appear next to their name in this repository:
https://github.com/orgs/StringhiniLab/teams/lab-team.

Responsibilities �

• Add new lab members to the Lab Team.
• Remove team members who are no longer part of the lab.
• Assign other members as Team Maintainers if necessary.

12

https://docs.github.com/en/organizations/managing-membership-in-your-organization/inviting-users-to-join-your-organization
https://docs.github.com/en/organizations/managing-membership-in-your-organization/inviting-users-to-join-your-organization
https://docs.github.com/en/organizations/organizing-members-into-teams/assigning-the-team-maintainer-role-to-a-team-member#about-team-maintainers
https://github.com/orgs/StringhiniLab/teams/lab-team

Part II

Practical Steps

13

1 Onboarding

Checklist �

□ Create your personal GitHub account.

□ Request access to the GitHub Organization.

□ Request access to the Lab Team.

□ Install Git, R and RStudio.

1.1 Create Your Personal GitHub Account � �

First, you need to create an account on GitHub by following these steps: Creating an account
on GitHub.

After creating your GitHub account, you’ll notice that your profile is associated with a specific
URL, structured as follows:

• https://github.com/<username>

This page allows you to access your account settings and all repositories you create.

14

https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github

1.2 Request Access to the GitHub Organization �

Our lab has a GitHub organization that centralizes the repositories for everything produced
in the lab.
Notice that the organization’s URL is different from your profile’s:

• https://github.com/StringhiniLab

To gain access, you need to provide your GitHub username to the person managing the or-
ganization. Having access to the organization will enable you to create repositories within
it.

Note that you have your personal GitHub url, and also there is the url of the GitHub
organization.

1.3 Request Access to the Lab Team �

Not all lab repositories are public. To access repositories owned by other lab members, you
must also be added to the Lab Team.
Dr. Stringhini, as the owner of the organization, always has access to all repositories.

• Adding organization members to a team
• Managing team access to an organization repository

1.4 Installation Instructions �

To work in the lab, you will need to have Git, R, and RStudio installed.
Please note that the installation process may vary depending on whether you have a computer
with Windows, Linux, Mac (Intel chip), or Mac M1, M2 and M3 (Apple Silicon chip) operating
systems.

• Git: Download Git
You can read more about options on how to install Git in the book Happy Git and
GitHub for the useR (Bryan and Hester 2024)

• R: Download R

• RStudio: Download RStudio
If you want to read some more details about basic use of R and RStudio you can read the
preqrequisites section of the book R for Data Science (Wickham and Grolemund 2024)

15

https://docs.github.com/en/organizations/collaborating-with-groups-in-organizations/about-organizations
https://github.com/StringhiniLab
https://docs.github.com/en/organizations/organizing-members-into-teams/adding-organization-members-to-a-team
https://docs.github.com/en/organizations/managing-user-access-to-your-organizations-repositories/managing-repository-roles/managing-team-access-to-an-organization-repository
https://git-scm.com/downloads
https://happygitwithr.com/install-git
https://cran.r-project.org/
https://posit.co/download/rstudio-desktop/
https://r4ds.had.co.nz/introduction.html#prerequisites

Installation issues
It could happen that you find issues during the installation process. Remember that
we are a team and that you can use Slack to share the problem and look for support �

References

16

2 Starting a New Project

These steps only need to be completed once, at the beginning of a project.

Checklist �

□ Create a private repository by new project.

□ Add the Lab Team to the repository.
□ Clone the repository and associate it with an RStudio Project.
□ Add your Data folder to .gitignore.
□ Complete the README file using the template.

The most comprehensive book on using Git and GitHub for R users is Happy Git and
GitHub for the useR (Bryan and Hester 2024)

2.1 Create a private repository by new project

When starting to work on a new project, your first step is to create a private repository in
the lab’s GitHub organization: StringhiniLab GitHub.

1. Click the green New button to open a window like this:

17

https://happygitwithr.com/
https://happygitwithr.com/
https://github.com/StringhiniLab

2. Complete/select using the following criteria:

□ Owner
Select StringhiniLab as the owner, not your personal GitHub account.

□ Repository Name
Choose a name that represents your project. Since this repository will be private,
append _private to the name.
For example, if the repository name is chronic-diseases, name it chronic-diseases_private.

□ Description

18

Provide a more detailed description of the project here. This helps identify the reposi-
tory’s content in the organization.

□ Public or Private?
Ensure the repository is set to Private.

□ Initialize Repository With
Add a README.md.

Ignore the other options for now.
If everything works, you’ll see your repository within the GitHub organization labeled as
Private.

2.2 Add the Lab Team to the repository

1. Navigate to the repository’s Settings tab.
In the left-hand sidebar, find and click on Collaborators and teams.

2. Click Add teams and add Lab Team.
By default, you will select the Read role for the team. The idea is that other Lab
Members can view the repository but will not be able to edit it by mistake.

19

https://github.com/StringhiniLab

This allows all current Lab Members to view (but not modify) your project.
If you don’t want to share an analysis with other Lab Members, you can create a repository
in your personal GitHub account instead. However, always ensure sensitive data is not
pushed to GitHub for confidentiality reasons.

All repositories in StringhiniLab should be accessible to the Lab Team, which is why these
repositories are hosted in the organization instead of personal accounts. Remember that
individuals who are Owners of the organization can view all repositories even if there are not
part of the Team.

2.3 Clone the repository and associate it with an RStudio Project

Before start using RStudio:
We recommend changing the default option Restore .RData into workspace at
startup as explained in this section. (Posit 2024)

1. Open RStudio
If RStudio is not installed, complete first the installation instructions in the Onboarding
section.

20

https://docs.posit.co/ide/user/ide/get-started/index.html#blank-slate

2. Clone the Repository
In RStudio:
File > New Project > Version Control > Clone a Project from a Git
Repository.

Go back to the repository and copy the repository’s URL.

And paste it in the correct field:

21

If successful, you’ll see a folder containing your project, including the README file that we
created on GitHub, in the Files tab at the bottom-right of RStudio.

Note that an .Rproj icon has appeared. Clicking on this icon outside of RStudio will open
RStudio directly within the project.

Additionally, the project name now appears in the top-right corner. By opening that menu,
you can easily switch between projects without leaving the RStudio IDE.

You’ll also notice a tab named Git in the top-right panel.

22

Do you want to learn more about the use of RStudio and how to create
projects?

• Check the RStudio IDE User Guide (Posit 2024)

• Read the Projects section in Chapter 6 of R for Data Science (Wickham and
Grolemund 2024)

2.3.1 Add your Data folder to .gitignore

We work with sensitive data. If working locally, create a data folder (e.g., click the + Folder
icon in the Files tab). Move your data files into this folder.

Open the .gitignore file and add the line data/. This tells Git to ignore the contents of the
data folder, preventing accidental data pushes.

We recommend creating at least two sub-folders within data/:

• raw/: Use this folder to store the original datasets.
• processed/: Use this folder to save any datasets generated as preliminary or final results

from your analyses.

If data/ is listed in your .gitignore file, both subfolders will automatically be ignored by
Git since they are located within the data/ folder.

If the folder is not in the project root or has a different name, adjust the .gitignore settings
accordingly.

Your project structure should look like this:

project-folder/
��� .gitignore # Specifies files and folders to ignore in version control
��� README.md # Documentation about the project
��� data/ # Folder to store datasets

��� raw/ # Original datasets (never modified directly) �
��� processed/ # Cleaned and processed datasets

23

https://docs.posit.co/ide/user/
https://r4ds.hadley.nz/workflow-scripts.html#projects

What type of document should you use for your data analysis?
There are many files you can use run your code. You can use a basic R script (Wickham
and Grolemund 2024), an RMarkdown document or its more current version Quarto.
If you’re unsure where to start, we recommend using a Quarto Document. A Quarto
document, just like RMarkdown, allows you to include code chunks throughout a text
and save it as a Word, PDF, or HTML report. Combining text where you explain
your reasoning and the details of the analysis with the code chunks makes it much
easier to understand each section of code, both for yourself and for other readers.

• To use Quarto, you must first install it
• Tutorial to learn how to create a document with Quarto (Quarto Project 2024)

It’s important to note that there is a learning curve for using tools like Quarto. Cre-
ating a simple R script might be a good enough option if you’re looking to start your
analysis more straightforwardly.
We encourage you to discuss this on the lab Slack to hear the experiences
of other researchers. If any consensus emerges, feel free to open a New
Issue here to improve this guide.

and you .gitignore file should look like this:

.Rproj.user

.Rhistory

.RData

.Ruserdata
data/

2.4 Complete the README using the template

Before starting work, fill out the README.md file with the following information:

Title

Author
Name: [Your Name]
Email: [Your Name]

Start Date

24

https://r4ds.hadley.nz/workflow-scripts.html#scripts
https://quarto.org/docs/get-started/
https://quarto.org/docs/get-started/hello/rstudio.html
https://r4ds.hadley.nz/workflow-scripts.html#scripts
https://r4ds.hadley.nz/workflow-scripts.html#scripts
https://github.com/StringhiniLab/GitHubProceduresLab/issues

[YYYY-MM-DD]

Objective
The objective of this project is to ...

Database Used and Version
Database Name: [Name]
Data Version: [Specify version or date accessed]

-[] Sensitive data is stored locally and excluded from version control using `.gitignore.`
-[] All analyses comply with the data use agreements.

Project Structure

chronic-diseases/
��� data/ # Folder for datasets
� ��� raw/ # Original datasets (never modified directly)
� ��� processed/ # Cleaned and processed datasets
��� scripts/ # R scripts for analysis
��� outputs/ # Figures, tables, and other results
��� README.md # Project overview and documentation
��� .Rproj # RStudio project file

Reproducibility
Run `sessionInfo()` in the console and paste the output between the two lines with backticks:

```

```

There is more material available on organizing project structures (Eugene Barsky 2024), using
.gitignore (The Turing Way Community 2023) or other resources listed here, or creating
good README files (The Turing Way Community 2023) and name conventions (Eugene
Barsky 2024) if you want to explore further.

Additionally, UBC Library offers some basic data management courses that might be helpful
to you: Short courses (Eugene Barsky 2024)

References

25

https://book.the-turing-way.org/project-design/sdpw/pd-sdp-resources
https://book.the-turing-way.org/project-design/project-repo/project-repo-readme
https://libcal.library.ubc.ca/calendar/?t=g&q=Data%20Bites&cid=-1&cal=-1&ct=339

3 Regular Project Workflow

These steps should be completed every day you work on the project. Although they may
seem complex at first, once you get accustomed to them, you won’t need to think about it
anymore.

Checklist �

□ Add all the files you want to commit to the staging area.

□ Create a commit message.

□ Push the changes to the GitHub repository.

3.1 How to use the Git tab in RStudio

Why GitHub?
Git and GitHub were originally created for professional software development. It’s
important to clarify that lab members are not expected to be expert users of Git and
GitHub, but rather to handle basic commands necessary to achieve the use proposed.

Pay attention to the Git tab located in the top-right corner. Git will only display files that
have been added, modified, or deleted since the project was initialized or since the last commit
(we’ll cover what that means shortly).

Keep in mind that when we cloned the project from GitHub, two new files were added:

• The .Rproj file, created because we based our RStudio project on the repository.

26

• The .gitignore file, automatically generated as part of the project setup in RStudio.

These files will appear with a yellow question mark, indicating they are untracked—in other
words, Git is aware of them but has not yet saved them under version control.

The README.md file initially did not appear in the Git tab. However, after adding the template
and saving the changes, it now shows a blue “M,” which indicates that the file has been
modified.

If you were to remove a file, you would see it next to a red ‘D’, indicating that it has been
deleted from the project.

The next step is to save these changes in the project and add a descriptive title. Each time
you save a new version of the project, we say you are making a commit, which you label with
a title.

3.1.1 Add all the files you want to commit to the staging area.

The first thing you need to do is check in the Staged section of the Git tab all the changes you
want to save under the same title. You will notice that sometimes a green ‘A’ appears. You
can ignore this. The important part is that you check all the changes you want to save.

In our case, since we are working with non-collaborative repositories and the main purpose of
using GitHub is to share data with other coworkers and maintain a backup. If at any point
you need to learn more, at the end of this page, there are some recommended materials that
might be helpful.

27

3.1.2 Create a commit message.

After doing this, you need to click the commit button to make these changes permanent in
the project. You will then choose a message for the commit and click the Commit button.

How often should you commit?
Think of commits as checkpoints for related changes. If you might want to revert a
set of changes later, commit them together.

28

3.2 Push the changes to the GitHub repository.

Finally, to push the changes to GitHub, click the Push button.

You’ll notice that the files in the Git tab disappear after you commit. This is expected, as
Git only tracks changes between commits. Remember, if you don’t click the green arrow
representing push, the changes will not take effect on GitHub.

If everything went smoothly, you should navigate to the repository URL and see the changes
you made.

How often should you push?
Push your changes at least once a day after completing your work.

3.3 Moving foward with Git and GitHub �

If you want to learn more about Git and GitHub, we recommend the following books and
tutorials:

Books

• Happy Git and GitHub for the useR book (Bryan and Hester 2024)

• Chapter 12 - Collaboration with version control from the book Data Science: A First
Introduction (Timbers, Campbell, and Lee 2022)

• The Turing Way Handbook: Git for research projects (The Turing Way Community
2023)

Tutorials

29

https://happygitwithr.com/
https://datasciencebook.ca/version-control.html
https://book.the-turing-way.org/reproducible-research/vcs/vcs-git-in-research.html

• Software Carpentry: Version Control with Git (Gonzalez et al. 2019)

• Setting up a GitHub Repository for Your Lab - Version Control and Code Management
with GitHub (Our Coding Club)

• Code Refinery - Introduction to version control with Git (CodeRefinery Project)

References

30

https://swcarpentry.github.io/git-novice/
https://ourcodingclub.github.io/tutorials/git-for-labs/
https://coderefinery.github.io/git-intro/

4 Offboarding

• The Lab Member must be removed from the GitHub Lab Team.

When leaving the organization, you will lose access to private repositories created by other
team members but will retain access to those you created yourself.
Abdill, Richard, Emma Talarico, and Laura Grieneisen. 2024. “A How-to Guide for Code

Sharing in Biology.” PLoS Biology 22 (9): e3002815.
Allen, Christopher, and David MA Mehler. 2019. “Open Science Challenges, Benefits and

Tips in Early Career and Beyond.” PLoS Biology 17 (5): e3000246.
Bertram, Michael G, Josefin Sundin, Dominique G Roche, Alfredo Sánchez-Tójar, Eli SJ Thoré,

and Tomas Brodin. 2023. “Open Science.” Current Biology 33 (15): R792–97.
Bryan, Jennifer, and Jim Hester. 2024. Happy Git and GitHub for the useR. https://

happygitwithr.com/.
CodeRefinery Project. “CodeRefinery Lessons.” https://coderefinery.org/lessons/.
Data Carpentry. 2024. “Data Carpentry.” https://datacarpentry.org/. 2024.
Eugene Barsky, Paul Lesack, Billie Hu. 2024. “Introduction to Research Data Management.”

https://github.com/ubc-library-rc/rdm/.
Goldsmith, Jeff, Yifei Sun, Linda Fried, Jeannette Wing, Gary W Miller, and Kiros Berhane.

2021. “The Emergence and Future of Public Health Data Science.” Public Health Reviews
42: 1604023.

Gomes, Dylan GE, Patrice Pottier, Robert Crystal-Ornelas, Emma J Hudgins, Vivienne For-
oughirad, Luna L Sánchez-Reyes, Rachel Turba, et al. 2022. “Why Don’t We Share Data
and Code? Perceived Barriers and Benefits to Public Archiving Practices.” Proceedings of
the Royal Society B 289 (1987): 20221113.

Gonzalez, Ivan, Daisie Huang, Nima Hejazi, Katherine Koziar, and Madicken Munk. 2019.
“Software Carpentry: Version Control with Git.” Edited by Ivan Gonzalez, Daisie Huang,
Nima Hejazi, Katherine Koziar, and Madicken Munk. https://doi.org/10.5281/zenodo.
3264950.

Hicks, Daniel J. 2023. “Open Science, the Replication Crisis, and Environmental Public
Health.” Accountability in Research 30 (1): 34–62. https://doi.org/10.1080/08989621.2023.
1962713.

Mathur, Maya B, and Matthew P Fox. 2023. “Toward Open and Reproducible Epidemiol-
ogy.” American Journal of Epidemiology 192 (4): 658–64. https://doi.org/10.1093/aje/
kwad007.

Melvin, Ryan L, Steven J Barker, Joe Kiani, and Dan E Berkowitz. 2022. “Pro-Con Debate:
Should Code Sharing Be Mandatory for Publication?” Anesthesia & Analgesia 135 (2):

31

https://happygitwithr.com/
https://happygitwithr.com/
https://coderefinery.org/lessons/
https://datacarpentry.org/
https://github.com/ubc-library-rc/rdm/
https://doi.org/10.5281/zenodo.3264950
https://doi.org/10.5281/zenodo.3264950
https://doi.org/10.1080/08989621.2023.1962713
https://doi.org/10.1080/08989621.2023.1962713
https://doi.org/10.1093/aje/kwad007
https://doi.org/10.1093/aje/kwad007

241–45.
Our Coding Club. “Setting up a GitHub Repository for Your Lab - Version Control and Code

Management with GitHub.” https://ourcodingclub.github.io/tutorials/git-for-labs/.
Posit. 2024. “RStudio IDE User Guide.” 2024. https://docs.posit.co/ide/user/.
Quarto Project. 2024. “Hello, Quarto: Using Quarto with RStudio.” 2024. https://quarto.

org/docs/get-started/hello/rstudio.html.
Sharma, Nitesh Kumar, Ram Ayyala, Dhrithi Deshpande, Yesha Patel, Viorel Munteanu, Du-

mitru Ciorba, Viorel Bostan, et al. 2024. “Analytical Code Sharing Practices in Biomedical
Research.” PeerJ Computer Science 10: e2066.

Tazare, John, Shirley V Wang, Rosa Gini, Daniel Prieto-Alhambra, Peter Arlett, Daniel R
Morales Leaver, Caroline Morton, et al. 2024. “Sharing Is Caring? International Society
for Pharmacoepidemiology Review and Recommendations for Sharing Programming Code.”
Pharmacoepidemiology and Drug Safety 33 (9): e5856.

The Carpentries. “WebPage. The Carpentries Teaches Foundational Coding and Data Science
Skills to Researchers Worldwide.” https://carpentries.org/.

The Turing Way Community. 2023. “The Turing Way: A Handbook for Reproducible, Ethical
and Collaborative Research.” Zenodo. https://doi.org/10.5281/zenodo.7625728.

Timbers, Tiffany, Trevor Campbell, and Melissa Lee. 2022. Data Science: A First Introduction
- Version Control. Chapman and Hall/CRC. https://datasciencebook.ca/version-control.
html.

Wickham, Hadley, and Garrett Grolemund. 2024. R for Data Science. https://r4ds.hadley.
nz/.

Wilson, Greg, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex Nederbragt, and Tracy
K. Teal. 2017. “Good Enough Practices in Scientific Computing.” PLOS Computational
Biology 13 (6): 1–20. https://doi.org/10.1371/journal.pcbi.1005510.

Xu, Edward, Anna Catharina V. Armond, David Moher, and Kelly Cobey. 2025. “Key
Challenges in Epidemiology: Embracing Open Science.” Journal of Clinical Epidemiology
178: 111618. https://doi.org/https://doi.org/10.1016/j.jclinepi.2024.111618.

32

https://ourcodingclub.github.io/tutorials/git-for-labs/
https://docs.posit.co/ide/user/
https://quarto.org/docs/get-started/hello/rstudio.html
https://quarto.org/docs/get-started/hello/rstudio.html
https://doi.org/10.5281/zenodo.7625728
https://datasciencebook.ca/version-control.html
https://datasciencebook.ca/version-control.html
https://r4ds.hadley.nz/
https://r4ds.hadley.nz/
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1016/j.jclinepi.2024.111618

	Goal
	Introduction
	Ten reasons to define code management practices from day one
	References
	What are the lab's basic guidelines for data and code usage?
	Who are we, and what do we need?
	Justification
	References

	Defining roles
	GitHub Organization Manager
	Responsibilities 🎯

	GitHub Team Maintainer
	Responsibilities 🎯

	Practical Steps
	Onboarding
	Checklist ✅
	Create Your Personal GitHub Account 🧑💻
	Request Access to the GitHub Organization 🏢
	Request Access to the Lab Team 🔑
	Installation Instructions 🛠️
	References

	Starting a New Project
	Checklist ✅
	Create a private repository by new project
	Add the Lab Team to the repository
	Clone the repository and associate it with an RStudio Project
	Add your Data folder to .gitignore

	Complete the README using the template
	References

	Regular Project Workflow
	Checklist ✅
	How to use the Git tab in RStudio
	Add all the files you want to commit to the staging area.
	Create a commit message.

	Push the changes to the GitHub repository.
	Moving foward with Git and GitHub 📚
	References

	Offboarding

